Active Learning Classification of Drifted Streaming Data

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Data Envelopment Analysis for Classification of Streaming Data

The classification of fuzzy uncertain data is considered one of the most challenging issues in data analysis. In spite of the significance of fuzzy data in mathematical programming, the development of the analytical methods of fuzzy data is slow. Therefore, the current study proposes a new fuzzy data classification method based on fuzzy data envelopment analysis (DEA) which can handle strea...

متن کامل

Fuzzy Data Envelopment Analysis for Classification of Streaming Data

The classification of fuzzy uncertain data is considered one of the most challenging issues in data analysis. In spite of the significance of fuzzy data in mathematical programming, the development of the analytical methods of fuzzy data is slow. Therefore, the current study proposes a new fuzzy data classification method based on fuzzy data envelopment analysis (DEA) which can handle strea...

متن کامل

Automatic correction of SVM for drifted data classification

Concept drift is an important feature of real-world data streams that can make usual machine learning techniques rapidly become unsuitable. This paper addresses the problem of sudden concept drift in classification problems for which standard techniques may fail. To this end, support vector machines (SVMs) are automatically corrected to cope with a new suddenly drifted dataset. Results on real-...

متن کامل

MOA Concept Drift Active Learning Strategies for Streaming Data

We present a framework for active learning on evolving data streams, as an extension to the MOA system. In learning to classify streaming data, obtaining the true labels may require major effort and may incur excessive cost. Active learning focuses on learning an accurate model with as few labels as possible. Streaming data poses additional challenges for active learning, since the data distrib...

متن کامل

Learning Interestingness of Streaming Classification Rules

Inducing classification rules on domains from which information is gathered at regular periods lead the number of such classification rules to be generally so huge that selection of interesting ones among all discovered rules becomes an important task. At each period, using the newly gathered information from the domain, the new classification rules are induced. Therefore, these rules stream th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Procedia Computer Science

سال: 2016

ISSN: 1877-0509

DOI: 10.1016/j.procs.2016.05.514